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Abstract

Instrumental variables are widespread in empirical economics, but their use
is plagued by concerns that proposed instruments do not satisfy the validity
condition. This paper develops a framework for testing the validity of instru-
ments with covariates, using the motivating example of proximity to college
as an instrument for the effect of college attendance on wages (Card 1995). I
focus on the case of a binary instrument for a binary treatment, but the ap-
proach can be extended to continuous variables. Because this approach makes
it possible to quantify the degree of invalidity, it can often allow for point and
set identification of treatment effects even when the instrument is invalid. Ap-
plying the approach, I find that the proximity to college instrument is invalid
and likely overestimates the returns to college.

1 Introduction

Instrumental variables are popular in empirical economics because they allow the
researcher to identify the causal effect of a treatment on an outcome even when
treatment is correlated with unobserved determinants of the outcome. Their use is
complicated, though, by the difficulty of establishing the required condition that a
proposed instrument can properly be excluded from the outcome equation.

This paper proposes a framework for testing the assumption that an instrument
is valid, i.e. that it can properly be excluded from the outcome equation. Further-
more, the proposed framework allows one to quantify an instrument’s direct effect
for subsets of the population. In circumstances when this finding can reasonably be
extended to make inferences about the direct effect in the population as a whole,
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this allows us to make accurate inferences about causal effects even using invalid in-
struments. Because any source of variation in treatment status can be considered an
invalid instrument (if not a valid one), this allows for causal inferences in a broad class
of situations. The required assumptions are not onerous; the requirements for set
identification can be satisfied, for instance, by a selection model with comparatively
agnostic functional form and distributional assumptions.

As a motivating example, I consider the problem of estimating the wage returns
to college education. It is a puzzling stylized fact that instrumental variable esti-
mates of the wage returns to schooling are often higher than ordinary least squares
(OLS) estimates, since an individual’s unobserved ability would intuitively seem to
be positively correlated with years of schooling. There are several possible explana-
tions; for example, Card (1999) suggests that local treatment effects might be larger
than average treatment effects, and Griliches (1977) gives reasons why the direction
of bias in OLS might not be so clear. Another simple explanation is that at least
some of the instruments used to identify wage returns to schooling do not satisfy the
required validity condition and therefore yield biased estimates.

Card (1995) suggests that growing up in a labor market containing a college can
be used as an instrument for the effect of college attendance on wages, conditional
on some covariates. This instrument suffers from well-known validity concerns – for
example, perhaps the presence of a college in the local labor market is related to
unobserved ability, or perhaps there are externalities associated with human capital
such that the instrument identifies a mixture of private and social returns to school-
ing. But can we assemble an organized empirical case for whether these complaints
have merit or not? And, if the instrument is invalid, can we still use it to rescue
some information about true causal effects?

Intuition The intuition for my approach to testing validity is as follows. If Z is a
valid instrument for the effect of treatment D on outcome Y , then Z has no causal
connection with Y except through D. A typical causal diagram is presented in Figure
1.1 If we could shut off Z’s relevance (that is, remove any connection between Z and
D), then there would no longer be any relationship between Z and Y . Then if we
shut off the relevance and discover that Z and Y are still related, we can conclude
that Z is not a valid instrument.

This principle leads to a simple placebo test using covariates. If covariates X shut
off the relevance (that is, for some x, when X = x, Z is unrelated to D) without
simultaneously shutting off any direct effect of Z on Y , then we can detect whether
Z is valid or not by seeing whether Z and Y are related for observations with X = x.
Some empirical papers already implement placebo tests with this underlying logic
(e.g. Altonji et al. 2005a, Madestam et al. 2013), and my framework starts by
formalizing this logic.

1Disclaimer: The diagram is illustrative of a common case, but of course not all instruments
have this causal diagram. For instance, Z would still be valid if, rather than Z causing D, both Z
and D had some common cause Z ′ which was also unconnected to Y except through D.
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Figure 1: Example of a valid instrument
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Figure 2: Example of an invalid instrument
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To illustrate the placebo logic, consider how it could be applied to the proximity
to college instrument. Suppose that we observe a measure of high school IQ for
all the individuals in our data. We would imagine that students with very high IQ
scores would almost certainly attend college regardless of where they lived. Similarly,
students with very low measured IQs would seem very unlikely to attend college.
These are the always takers and never takers (e.g. of Imbens and Angrist 1994);
for them, the instrument has no relevance. Therefore we can test whether there is
any relationship among them between their proximity to college (Z) and their log
wages (Y ). If the instrument is valid, we should find no such relationship. If the
instrument is not valid, we will uncover such a relationship so long as the instrument
is not invalid exclusively for those individuals with average IQs and GPAs.

The weakness of the placebo approach is that, in practice, we often lack covariates
powerful enough to completely shut off the instrument’s relevance. In the schooling
example, it turns out that, even at extremely high measured IQ levels, there are
still a few students not attending college, and visa versa at low measured IQ levels.
Therefore, the second piece of the framework I develop in this paper will focus on
cases where the covariates X merely cause variation in the degree to which Z and D
are related – an imperfect placebo. The underlying principle is that, as we approach
no relevance, we should also approach no relationship between Z and Y .

Contributions The first contribution of this paper is to build a framework for
evaluating instruments by treating a placebo test as the limit of not-quite placebo
tests. This imperfect placebo test starts by dividing the population by covariate
values, then compares the first stage and reduced form effect of the instrument at
each value of the covariate X. If the instrument is valid, then the reduced form
should be close to zero whenever the first stage is close to zero. This can be tested
statistically, and it is easy to present graphical evidence as well.

This approach will be applicable in many settings. There is nothing particularly
special about the example of the proximity to college instrument; the variation in
relevance arises simply because treatment status is binary and because measured
IQ happens to be a powerful predictor of treatment status. The requirements will
generally be satisfied in applications where treatment status is binary or censored
and where some observed covariates are strong predictors of treatment status. The
requirements may also sometimes be satisfied without bunching in the treatment
variable as well.

The second contribution of this paper is in identifying causal effects using invalid
instruments. Consider the possibility that Z is invalid because it directly causes Y ,
but we are able to measure this direct causal effect by shutting off the indirect effect
of Z on Y through D using our covariates. Once we know the direct effect, we could
easily determine the effect of Z on Y through D, which then allows us to recover
the effect of D on Y . Difference-in-differences estimation can be thought of as an
instance of this approach, where the covariate that shuts off relevance is time period
(the instrument – membership in the treatment group – does not lead to treatment
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in some periods), and the assumption of common trends is an assumption that time
period does not modulate the direct effect of Z on Y . For many applications, it
may be more reasonable to relax the assumption that we can measure the exact
invalidity (which applies to every observation) to an assumption that we can bound
the average invalidity, thereby yielding set identification of treatment effects. I show
that the assumptions required for this set identification can be satisfied by a selection
model with weak assumptions.

The third contribution of this paper is to apply the frameworks for testing instru-
ment validity and for identification with invalid instruments to the problem of returns
to schooling, using the proximity to college instrument. I find that the strength of
the relationship between college proximity and college attendance within each decile
of measured IQ is not a successful predictor of the strength of the relationship be-
tween college proximity and adult wages in that decile. This evidence suggests that
proximity to college is not a valid instrument. The results of the set identification
approach suggest that, when treated as a valid instrument, proximity to college likely
overestimates the return to college.

The paper proceeds as follows. Section 2 briefly reviews the literature. Section
3 develops the econometric framework for testing instrument validity. Section 4
discusses identification of treatment effects with an instrument which is found to
be invalid. Section 5 applies these methods to the proximity to college instrument.
Section 6 concludes.

2 Related literature

This paper fits into large literatures on each of its three topics. There are a number of
papers which develop techniques for testing instrument validity in the case where the
number of instruments exceeds the number of endogenous regressors (e.g. Anderson
and Rubin 1949, Sargan 1958, Hansen 1982). Kitagawa (2008) and Huber and Mel-
lace (2011) offer tests for instrument assumptions with a just-identified instrument,
using the constraint that always and never takers must receive the same outcome re-
gardless of the value of the instrument to produce testable inequalities. Both of these
papers use outcome distributions rather than covariates to place bounds on which
data must represent always and never takers. A consequence of this agnosticism is
that their tests can be quite undersized unless the first stage is small. In the case of
testing instrument validity, an undersized test is not necessarily conservative, since
many researchers who might wish to test the validity of an instrument are proposing
the instrument themselves. Furthermore, their approaches encounter some difficulty
testing the claim that an instrument is valid conditional on other variables. Cae-
tano, Rothe, and Yildiz (2013) show that invalid instruments can be detected under
certain kinds of censoring of treatment status. While their approach does not suffer
from incorrect size, the restriction on the distribution of treatment status prevents
its use in many applications.
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My approach differs from all of these approaches through its reliance on covari-
ates. This imposes a new constraint, but I will argue that the requirements for
covariates in my approach are not onerous, so that my approach can be implemented
with many research designs so long as the sample size is adequate.2 The primary
requirement for tests based on my approach to have power – variation in relevance
of the instrument – is likely to be satisfied whenever treatment status is binary, cen-
sored, or bunched and we observe covariates which are good predictors of treatment
status, though it can be satisfied in other contexts as well. My approach also offers
appropriate size except in circumstances which would call into question whether it
is reasonable to generalize from local average treatment effects.

This paper also fits into a literature on identifying and estimating treatment
effects with invalid instruments. Flores and Flores-Lagunes (2010) give set identi-
fication of treatment effects, though their very weak assumptions may lead to very
wide bounds. Other papers provide results in cases where the instrument is invalid
in useful ways; for instance, Kolesar et al. (2013) considers the case where a large
number of instruments are invalid individually but valid on average, and Reinhold
and Woutersen (2011) provide bounds when instruments are invalid but create less
problematic variation in treatment than OLS. Additionally, many selection models
can also be seen as identifying treatment effects when the sources of variation in treat-
ment are not exogenous. This can be extended to set identification, as for instance
through the conditions developed in Altonji et al. (2005b).3 My set identification
results apply in somewhat different situations from Altonji et al. and the relative
weakness and plausibility of the assumptions required for their and my approaches
will depend on context.

Finally, there is an enormous literature on the wage returns to schooling. Most
papers which use U.S. data from recent years find a return on the order of 10% per
additional year of education using OLS and higher returns using IV, a pattern which
many researchers have found counterintuitive (e.g. Ashenfelter and Rouse 1999,
Card 2001). Other papers (e.g. Keane and Wolpin 1997, Carneiro et al. 2011) have
found lower average treatment effects using structural approaches. This paper helps
understand the high returns to schooling measured through instrumental variables
by solidifying the case that one well-known instrument is in fact invalid.

2My preferred implementation of my approach requires a workable sample size for estimation in
each of multiple subpopulations, where the subpopulations are defined by covariate values. There-
fore it becomes difficult to test the validity of instruments with any power when the sample is barely
large enough to implement an IV approach with any power.

3Altonji et al. frame their approach as a robustness check. I describe their approach as set
identification because they are effectively establishing a range of plausible values for the parameter
of interest under the assumption that the degree of selection on unobservables lies between zero
and the degree of selection on observables.
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3 A framework for testing validity

Suppose we are interested in the effect of treatment D on outcome Y , and we also
observe proposed instrument Z and covariates X. Assume that Z and D are binary.
I will borrow notation from Imbens and Angrist (1994). For each individual i, let
Yi(1) be i’s potential outcome if i takes the treatment (that is, if Di = 1) and Yi(0)
be the potential outcome if i does not. Similarly, let Di(1) be i’s potential treatment
status if i is assigned to treatment by the instrument (Zi = 1) and Di(0) be i’s
potential treatment status if assigned to the control group (Zi = 0). We can assign
labels to the types of individuals:

• i is an always taker if Di(0) = Di(1) = 1.

• i is a never taker if Di(0) = Di(1) = 0.

• i is a complier if Di(0) = 0 and Di(1) = 1.

• i is a defier if Di(0) = 1 and Di(1) = 0.

Once again following Imbens and Angrist, Z can be used to identify the local
average treatment effect (LATE) under the following assumptions:

Assumption 1. (Relevance) E [Di | Zi = z,Xi = x] is non-trivial in z for some x.

Assumption 2. (Validity) (Yi(1), Yi(0), Di(1), Di(0)) are jointly independent of Zi
conditional on Xi.

Assumption 3. (No defiers) There is no i such that i is a defier.

Notice that we are conditioning on X. This will be important.4

As the first piece of our framework, define a new function, comply(x), in the
following way:

comply(x) ≡ E(D | Z = 1, X = x)− E(D | Z = 0, X = x)

Under our instrument assumptions, comply(x) captures the probability that an
individual whose covariates take value x is a complier. That is, it is the size of the
first stage conditional on X = x. Figure 3 shows a local linear fit of probability of
attending college conditional on IQ and college proximity in the NLS data used by

4The original Imbens and Angrist paper does not condition on covariates. However, the propo-
sition follows closely from Imbens and Angrist: At each value of X, the Imbens and Angrist
assumptions are satisfied, so the LATE is identified at each x in the domain of X. Because of
monotonicity, the measure of compliers at each value of X is identified, and so is the distribution of
values of X. Therefore the overall LATE is identified as a weighted average of the LATEs identified
at each value of X.
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Figure 3: Estimated comply function for Card’s instrument with IQ as X.

Card.5 The function comply(IQ) can be estimated as the distance between the curves
at each level of IQ. Under instrument assumptions, the true value of comply(x)
should never be negative. The figure presumably shows some negative values due
to estimation error; the confidence intervals become quite large at extreme values,
where there are few data points.

Now define gain(x) in a parallel way:

gain(x) ≡ E(Y | Z = 1, X = x)− E(Y | Z = 0, X = x)

This function captures the extent to which the outcome Y and the instrument Z
are related at each value of the covariates X. It is the size of the reduced form effect
conditional on X = x. Figure 4 illustrates the gain function with NLS data using IQ
as the covariate.6 As with Figure 3, the confidence intervals become large at values
far from 100. In the example of the proximity to college instrument, gain(x) = 0

5The fit is local linear with bandwidth determined by Silverman’s rule. Note that the ends of the
IQ distribution have been trimmed from the diagram for clarity due to excessively large confidence
intervals.

6As with the comply function, the fit is local linear and the ends have been trimmed for clarity.
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Figure 4: Estimated gain function for Card’s instrument with IQ as X.

would mean that individuals whose covariates take the value x and live near a college
earn the same amount on average as individuals with the same covariate value who
do not live near a college.

Finally, I introduce one additional assumption.

Assumption 4. (Finite expectations) E(|Y |) is finite.

This assumption is needed to prevent the possibility that a zero measure of the
population might disrupt population averages, and to justify a continuity argument
that allows for extrapolation from cases where there are compliers to cases where
there are no compliers.

Theorem 1. Let FY |X,Z(y | x, z) be the population distribution of Y conditional on
X = x and Z = z. Suppose Z satisfies validity and no defiers conditional on X.
Then for all x such that comply(x) = 0, FY |X,Z(y | x, 1) = FY |X,Z(y | x, 0). We call
such x a “no-relevance point”.

Proof. Suppose that x is a no-relevance point. By definition, comply(x) = E(D | Z =
1, X = x)−E(D | Z = 0, X = x). Because there are no defiers, E(D | Z = 1, X = x)
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is the probability that i is a complier or an always taker conditional on X = x, while
E(D | Z = 0, X = x) is the probability that i is an always taker conditional on
X = x. Types are mutually exclusive, so comply(x) is the probability that i is a
complier if Xi = x, and therefore there is a zero probability that i is a complier at x.

Vytlacil (2002) shows that the instrument assumptions are equivalent to the
following latent selection model: Let the propensity score p(x, z) ≡ P (D = 1 | X =
x, Z = z). Then there exists some random variable U such that Di = 1{Ui >
p(x, z)} for all i such that Xi = x, Zi = z, and such that Zi is jointly independent of
(Ui, Yi(1), Yi(0)). I incorporate this approach for the rest of the proof.

We are to show that FY |X,Z(y | x, 1)− FY |X,Z(y | x, 0) = 0 for all y. Now,

FY |X,Z(y | x, 1)− FY |X,Z(y | x, 0)

= [Pr(Yi(0) ≤ y, Ui ≤ p(x, z) | Xi = x, Zi = 1) + Pr(Yi(1) ≤ y, Ui > p(x, z) | Xi = x, Zi = 1)]

− [Pr(Yi(0) ≤ y, Ui ≤ p(x, z) | Xi = x, Zi = 0) + Pr(Yi(1) ≤ y, Ui > p(x, z) | Xi = x, Zi = 0)]

=Pr(Yi(0) ≤ y | Xi = x, Zi = 1)Pr(Ui ≤ p(x, z) | Yi(0) ≤ y,Xi = x, Zi = 1)

+ Pr(Yi(1) ≤ y | Xi = x, Zi = 1)Pr(Ui > p(x, z) | Yi(1) ≤ y,Xi = x, Zi = 1)

− Pr(Yi(0) ≤ y | Xi = x, Zi = 1)Pr(Ui ≤ p(x, z) | Yi(0) ≤ y,Xi = x, Zi = 0)

− Pr(Yi(1) ≤ y | Xi = x, Zi = 1)Pr(Ui > p(x, 0) | Yi(1) ≤ y,Xi = x, Zi = 0)

=Pr(Yi(0) ≤ y | Xi = x)Pr(Ui ≤ p(x, 1) | Yi(0) ≤ y,Xi = x)

+ Pr(Yi(1) ≤ y | Xi = x)Pr(Ui > p(x, 1) | Yi(1) ≤ y,Xi = x)

− Pr(Yi(0) ≤ y | Xi = x)Pr(Ui ≤ p(x, 0) | Yi(0) ≤ y,Xi = x)

− Pr(Yi(1) ≤ y | Xi = x)Pr(Ui > p(x, 0) | Yi(1) ≤ y,Xi = x)

The first equality follows from the definitions of distributions. The second equality
follows from the rule that Pr(A,B) = Pr(A)Pr(B | A). The third equality follows
from the independence of Z from Yi(0) and Yi(1).

If Xi = x, i must be either an always taker or a never taker. Therefore, Ui ≤
p(x, 1) if and only if Ui ≤ p(x, 0). As a result, the first and third terms above cancel,
as do the second and fourth. We conclude that FY |X,Z(y | x, 1) = FY |X,Z(y | x, 0).

Corollary 1. Suppose Z satisfies validity conditional on X, no defiers, and finite
expectations. Then for all x such that comply(x) = 0, gain(x) = 0.

Proof. By Theorem 1, if x is a no-relevance point, then FY |X,Z(y | x, 1) = FY |X,Z(y |
x, 0). Then E(Y | X = x, Z = 1) = E(Y | X = x, Z = 0) if either expectation
exists. We have assumed they exist. Therefore gain(x) = 0.

The theorem provides the more general result. However, the corollary is more
practical for implementation for two reasons. First, the comparison of distributions
requires some statistic by which to compare them. The mean has natural appeal in
part because instruments are frequently only required to be mean-independent, not
independent, of an error term (e.g. in 2SLS estimation), and in part because the
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Figure 5: Sample comply-gain diagram for a likely valid instrument.

pattern of gain(x) when comply(x) 6= 0 will lend itself to interpretations involving
treatment effects. Second, working with entire distributions can be quite burdensome
with limited data.

Note that the theorem and corollary each rely on both the assumptions of validity
and of no defiers. However, when x is a no-relevance point at which E(D | X =
x, Z) = 1 or 0, defiers must be measure zero at x as a consequence of validity and
therefore we only need to assume validity. So testing for violations of the theorem or
corollary will generally be a joint test of validity and no defiers, but solely a test of
validity in these special cases. (Of course, these “special cases” might be the most
common no-relevance points in practice, which is why I refer to the approach in this
paper as testing validity.)

Suppose now that we observed the true values of gain(x) and comply(x) for a
number of x, and we plotted them on a graph, as in Figure 5. Corollary 1 requires
that, if the instrument is valid, then any intercept with the gain axis must occur at
the origin. If we saw values such as the values in Figure 5, we might be inclined to
believe that, if we did observe some x with comply(x) = 0, that gain(x) would also
equal zero – supporting the theory that the instrument is valid. However, if we saw
values such as the values in Figure 6, we would most likely be disinclined to believe
in the instrument’s validity.

Is this intuition sensible? First, let’s understand what this graph captures. Take
the point corresponding to some x. The slope of the line connecting that point to
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Figure 6: Sample comply-gain diagram for a likely invalid instrument.

the origin is gain(x)/comply(x). Under the assumptions of validity and no defiers,
this slope is the average treatment effect on compliers at that value of x. If the
average treatment effect on compliers at x is not strongly related to comply(x), then
we might expect the points we observe to lie close to some line through the origin,
and closer to that line as we draw closer to the origin. We should only encounter a
graph like Figure 6 with a valid instrument when the treatment effects on compliers
coincidentally become extremely large as comply(x) becomes small.

I suggest three approaches to testing validity, in order of the weakness of the
required assumptions. The first is to observe a no-relevance point. As discussed
before, this is simply placebo testing. The second is to suppose that, at least for some
subsets of the population, there exists a relationship between comply(x) and gain(x)
which satisfies conditions for nonparametric estimation. Local linear estimation is
likely to be an appropriate approach because of its performance on boundaries. Then
we fit the observed values of comply and gain to estimate what value of gain(x)
would be expected if x were a no-relevance point. The third approach is to assume
a parametric relationship between the comply and gain functions. A simple example
is to assume that the average treatment effect on compliers at x is unrelated to
comply(x) (which holds, for instance, if treatment effects are homogeneous in the
population).

The first approach is trivial; conditional on observing a no-relevance point, we
can test the claim of Theorem 1 with a Kolmogorov-Smirnov test, or we could test
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Corollary 1 with a t-test for the equality of means. The next two subsections will
briefly discuss the second and third approaches outlined above, starting with the
parametric approach. Because the comply and gain functions must be estimated from
data, error in this estimation will be a concern in finite samples for the second and
third approaches. This estimation error will be discussed after the initial discussion
of the two approaches.

Before proceeding any further, though, one point deserves brief additional dis-
cussion. As pointed out before, the theorem and the corollary both give conditions
which must be true if Z is a successful instrument conditional on X. However, it is
not always the case that conditioning on a covariate will preserve the validity of Z.
In particular, we should be cautious in conditioning on any X which is caused by
Z. As an illustration, suppose that, in testing the proximity to college instrument
for college attendance, students who do not apply to college do not attend. Then
we could condition on whether students applied to college, and we would observe
that the instrument (proximity to college) is unrelated to treatment status (college
attendance) among those students who do not apply, so that we would have a no-
relevance point. But if the instrument is valid unconditional on application status, it
is unlikely to be valid conditional on application status, since some of the people who
do not live near a college and choose not to apply to college might be compliers, and
would have a different realization of the covariate (i.e., they would apply to college)
if they had a different realization of the instrument. These compliers presumably
have higher ability than the never takers, and therefore, under the theory of the
instrument’s unconditional validity, we would expect students who did not apply to
college to have higher earnings if they did not grow up near a college, yielding a
negative value of gain(x) at the no-relevance point.

With that disclaimer out of the way, let us proceed to developing approaches.

3.1 Parametric testing

Suppose that we do not observe a no-relevance point but we do observe a collection
of values of X which produce different values of the comply function. We wish to
predict what would happen if we observed a no-relevance point. To estimate this
relationship, we will fit a curve to the collection of measured values of comply and
gain, and we will test for whether the curve intersects the gain axis at the origin.
The true curve we will try to estimate can be described by the function g, defined
such that, drawing an x at random,

E [gain(x) | comply(x)] = g(comply(x)) a.s.

This approach assumes that comply(X) is a random variable. Our test, from
Corollary 1, will be whether or not g(0) = 0. (This means 0 should be contained in
the support of comply(X), so that g(0) is defined, even if we happen not to observe
any no-relevance x.) I will outline an infeasible estimator but I use the language
of expectations for two reasons. First, there might be multiple values of gain(x)
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attained at one value of comply(x). For instance, proximity to college might have
no impact on college attendance for both very high IQ and very low IQ individuals,
so that comply(x) = 0 for both subpopulations, but perhaps low IQ individuals
earn 10% more by living near a college while high IQ individuals earn only 5% more.
Second, I use expectations rather than deterministic values of gain(x) to acknowledge
that we must ultimately implement a feasible estimator.7

Nonparametric estimation of g is in some sense agnostic but is unnecessary if we
already know the true functional form of g. The simplest example is if treatment
effects are homogeneous. If the treatment effect βi = Yi(1) − Yi(0) = β for all i,
then for all x, under the instrument assumptions, gain(x) = β comply(x). In fact,
the same functional form, g(comply(x)) = β comply(x), will occur under the instru-
ment assumptions whenever the treatment effect on compliers at x is independent of
comply(x).

A simple test of instrument validity, then, is to estimate the line of fit between
the gain and comply functions allowing for a constant term, and then test whether
the constant term is equal to zero. That is, we take a collection of values of X for
which we observe gain and comply, and then estimate the regression

E [gain(x) | comply(x)] = α1 + α2 comply(x)

Under the null hypothesis of validity, α1 = 0. Under the alternative hypothesis of
invalidity, α1 will not in general equal zero.8 One simple approach is to estimate α1

using ordinary least squares regression. If standard OLS assumptions hold, α̂1 (our
estimate of α1) would follow the usual distribution of a constant term in OLS with
n observations, and confidence intervals can be estimated using standard statistical
packages.

Of course, we will observe estimates ̂comply(x) and ĝain(x) rather than their
population analogues. A standard set of OLS assumptions, adapted to the problem

of fitting a relationship between ̂comply(x) and ĝain(x), is the following:

OLS 1 Let ε ≡ ĝain(x)− α1 − α2
̂comply(x). Then E(ε | comply(x)) = 0.

7If effects are smooth, so that we might have every reason to believe that the true values of gain
lie exactly on g, and if we need that gain(x) should be exactly equal to zero when comply(x) = 0 (not
just equal to zero on average), why should we use the notation of expectation? Because estimation
error in comply and gain can be thought of as introducing noise into the observed relationship
between comply and gain. The issue that we might be tricked into believing an instrument is
valid when gain(x) is symmetric around zero for several no-relevance x’s can be largely resolved by
allowing for different g functions on different subsets of the data and jointly testing that g(0) = 0
for each subset.

8It is theoretically possible to construct a case in which there is a zero intercept despite invalidity.
For example, it might be that the direct effect of Z on Y is proportional to comply(X). There are
additional knife edge cases, but it seems to me that the simplest rule of thumb for intuiting whether
this approach is likely to have power is to ask whether suspected invalidity is likely to approach
zero as the relevance approaches zero.
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OLS 2 We observe more than one value of ̂comply(x).

OLS 3 Observations of
(
̂comply(x), ĝain(x)

)
are i.i.d.

OLS 2 is presumably satisfied, or we wouldn’t be pursuing an approach based
on variation in relevance. OLS 1 is possibly problematic in finite samples, however,
because estimation error in comply(x) is potentially correlated with estimation error
in gain(x), for reasons which will be discussed shortly. Similarly, to estimate appro-
priate standard errors for α̂1, we must estimate the comply and gain functions in a
way which preserves OLS 3. A more complete discussion of appropriate assumptions
accompanies the discussion of estimation error.

It is easy to see how this approach could be generalized. Suppose we imagine that
the true relationship between comply and E(gain) is characterized by a function hθ
with some parameters θ, with h(0; θ) = 0. Then we estimate θ and α in the equation

E [gain(x) | comply(x)] = α + h(comply(x); θ)

and test whether α = 0.

3.2 Nonparametric testing

In principle, we would like to impose as few restrictions on g as possible. We can
do so with nonparametric estimation. Suppose that g is continuous on the interval
[0, ε) for some ε > 0. Then it follows from the corollary that, if the instrument
assumptions and finite expectations are satisfied, then

lim
c↓0

E [gain(x) | comply(x) = c] = 0

Because we are interested in estimating a boundary value, local linear estimation
is likely to be appropriate. The most significant assumption that local polynomial
requires for our purposes is that, for local polynomial estimation of degree p, we
require that g be p+ 1 times continuously differentiable in comply(x). Therefore, for
local linear estimation, we need that g must be twice differentiable.

This assumption may sound innocuous, but it is likely to have bite in some
applications. Consider, for example, if there are two subsets of the domain of X, A
and B. Treatment effects are large for individuals in A relative to treatment effects
in B. Suppose in addition that the lowest observed values of the comply function
for A are above the lowest values for B. Then we may find ourselves in a situation
like the one illustrated in Figure 9, where g is discontinuous at the lowest value of
comply in A.

When we encounter this situation, we can still attempt estimation by considering
subsets of the data individually. It might not be the case that our data as a whole
fulfills the local polynomial assumptions, but we may be able to divide our data into
subsets such that, instead of a single function g satisfying the appropriate conditions
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Figure 7: Sample comply-gain diagram with discontinuous function g.

for the enter dataset, we instead have functions gj for each subset j which satisfies
local polynomial conditions. Then we can perform a joint test that gj(0) = 0 for
each such subset j. Naturally, we could follow the same approach if a parametric
assumption were appropriate only for subsets of the data.

The other significant assumption is that draws of
(
̂comply(x), ĝain(x)

)
should

be i.i.d. This consideration also crops up in the parametric case, and risks not being
satisfied if we pursue an inappropriate approach to estimating the comply and gain
functions.

3.3 Estimation error

The estimators described in the previous two sections were infeasible because the
true values of the comply and gain functions are not known for each x. Estimating
these functions from the data poses some challenges, though, because our errors in
estimating one function are likely to be correlated with our errors in estimating the
other. This is analogous to the problem that two-stage least squares has a central
tendency in the direction of OLS (Nagar 1959) and produces a similar problem of
bias.

The intuition is the same as the intuition behind why IV is biased in the direction
of OLS. Presumably the error term in the first stage equation is correlated with
the error term in the second stage equation, or we wouldn’t need an instrument.
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The randomness of realizations of these error terms in the sample are the source of
estimation error in finite samples. Because the error terms are correlated, then the
estimation errors will have some correlation as well.

Estimation errors are a potential issue for the two approaches outlined before.
Provided we observe the true values of the comply and gain functions, the desirable
properties of the approaches outlined in the previous two parts follow easily from the
existing literature on regression and nonparametric regression. But using incorrect
values for the comply and gain functions will lead to incorrect size for validity tests,
as well as biased estimates of the direct effects of Z for use in the set identification
approach of the next section. For example, in the case of homogeneous effects, in
which we wished to estimate g using OLS, our parameter estimates will be biased

because the error term in the gain equation is correlated with ̂comply(x).
As an additional cautionary note, estimating comply(x) and gain(x) using data

not at x introduces an additional complication: Errors in our estimate of, say,
comply(x) will be correlated with errors in our estimate of comply(x′) for x′ near x!
In the context of the validity test I’ve outlined, this becomes a violation of the i.i.d.
assumption used in regression.

Preliminary Monte Carlo evidence suggests that these concerns are ignorable in
ideal cases but become important in small samples when the correlation in error terms
is strong and the covariate X is not a particularly powerful predictor of treatment
status.

Perhaps future analysis will uncover a simple criteria for judging whether esti-
mation error is likely to be serious problem. In the meantime, one technique for
getting around these issues is to use an approach parallel to the split-sample instru-
mental variables (SSIV) approach outlined by Angrist and Krueger (1995). Because
we wish to use the values of the comply and gain functions in a regression of gain(x)
on comply(x), our core problem is that the estimation errors are correlated, for the
reasons described above. If estimation errors were uncorrelated, then the problem for
the regression of gain on comply would only be attenuation bias. But the correlation
in estimation errors can be broken by splitting the sample in half at each x, using one
half to estimate comply(x) and the other half to estimate gain(x). Because we can
compute standard errors for the estimation of comply(x), the degree of noise in our
estimate of the comply function can be explicitly measured and we can adjust appro-
priately for attenuation bias using error-in-variables regression with the appropriate
reliability ratio. Noise in our estimates of gain(x) will not bias the regression results,
though such noise does reduce the power of the test to detect invalid instruments.
By estimating the comply and gain functions separately at each value of X, we also
avoid violation of the i.i.d. assumption.

This approach will produce a test with correct size, but I have not shown that
this is the optimal approach to estimating the comply and gain functions.9 If data at

9In fact, I would suppose it is not; it seems inefficient to throw out half of your data for each
step of the estimation.
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each x is sparse, it becomes practical to group multiple values of X together so that
standard errors are not excessive at each X. At this time, I do not have guidance for
how this grouping should be accomplished. Future work may uncover a more efficient
approach to estimating the comply and gain functions so that tests of validity based
on the comply-gain framework can have maximal power conditional on size.

3.4 Commentary

I have outlined three approaches to testing an instrument’s validity: Finding a no-
relevance point, guessing what would happen at a no-relevance point without para-
metric assumptions, and guessing what would happen at a no-relevance point using
parametric assumptions. What are the relative strengths and weaknesses of these
three approaches?

Finding a no-relevance point is potentially the most credible. However, it needs
to be the case that the point is actually no-relevance. Suppose we find some x such

that our estimate ̂comply(x) = 0 when, in reality, comply(x) = k > 0. For the
reasons outlined in the previous section, we might expect that ū1(x) − ū0(x) 6= 0,
so that we would estimate gain(x) to be non-zero under validity. So we are not free
from concerns about estimation error in this case. Claims based on testing at a no-
relevance points will be strongest when we have strong theoretical reasons to believe
that comply(x) = 0. Finding such points will frequently be a challenge in empirical
applications.

The second approach was nonparametric estimation of the g function describing
the comply-gain relationship. The primary advantage of this approach is the weak
requirement on treatment effects. It suffices that treatment effects are continuous
over comply(x) for some subsets of the data. However, the test will have low power
unless there are some points at which the instrument induces little compliance. That
is, we may not need covariates so strong that they can completely shut off the
relevance, but we do require that our covariates should be quite strong.

The third approach was parametric estimation of the g function. The parametric
assumption can give the test some power even when the covariates are not so strong
that they can nearly shut off the relevance. Furthermore, a parametric assumption
may be more desirable than nonparametric estimation when the data is sparse and
noisy. This would occur, for example, with small samples. However, it may be
easy to disbelieve a parametric assumption in many applications. It is difficult to
imagine applications where, should a linear specification for the g function appear to
be inappropriate to the data, another parametric assumption would be satisfying.

An advantage of the comply-gain framework is that it allows for the presentation
of visual evidence about an instrument’s validity. In the same way that researchers
employing a regression discontinuity design can easily demonstrate the robustness of
their findings to reasonable alternate specifications using a graph, so too is it possible
for researchers with appropriate data and adequate sample size to demonstrate with
a graph that validity appears to hold (or not to hold) under any reasonable functional
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form assumptions.
This paper focuses on the case of binary instruments. However, it is easy to see

how the framework can be extended to continuous instruments. With continuous Z,
comply(x) becomes the partial of D with respect to Z for the population at X = x,
and gain(x) becomes the partial of Y with respect to Z at X = x. I focus on the
binary case in this paper for simplicity.

4 Identification with invalid instruments

Imagine that we have discovered using the techniques from the previous section that
our instrument is invalid. This might be disappointing, but it may still possible to
recover some information about treatment effects. This section describes conditions
under which set identification of local average treatment effects is still possible, and
compares these conditions to a selection model approach.

Suppose that our proposed instrument is found to be invalid, such that we can
write the true (structural) outcome equation in the following way:

Yi = g(Xi) + βiDi + h(Xi)Zi + εi

with h(Xi) 6= 0 and ε uncorrelated with the other terms (including Z) by defini-
tion. We wish to identify the average value of βi across the population of compliers.
Suppose we knew h(Xi). Define Y ∗i ≡ Yi − h(Xi)Zi. Then we could re-write the
equation as

Y ∗i = g(Xi) + βiDi + εi

while preserving the desirable property that the left-hand side is observed for
each i. Then we can use Z as an instrument for the effect of D on Y ∗, and we will
still satisfy the 2SLS requirement that Z be mean-independent of the error term ε.
Since the causal effect of D on Y ∗ is the same as the effect of D on Y , this means
we can identify the LATE of interest.

The challenge, then, is to identify h(Xi). One approach would be to assume that
h(Xi) = k for some constant k, and that our task is to identify k. Then each of
the approaches outlined in the previous section can identify k. (If the instrument is
valid, then h(Xi) = 0.)

This assumption of constant invalidity has sometimes been used in practice. As
mentioned before, difference-in-differences estimation can be thought of as using time
period as the covariate X, with the pre-treatment period as the no-relevance x. Then
the common trends assumption is an assumption that h takes the same value for pre-
and post-treatment periods.

However, assuming that h takes a single value is clearly restrictive in certain
ways. Consider the example of the proximity to college instrument. Suppose the
labor market is segmented between skilled and unskilled workers, and suppose that,
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because of moving costs, the higher probability of attending college if you grew up
near a college leads there to be an unusually high proportion of skilled workers (and
an unusually low proportion of unskilled workers) in the places where the students
who grew up near a college live in adulthood. By simple supply and demand,10 this
should depress wages for the always takers and improve wages for the never takers
when they grew up near a college relative to if they had not. Therefore, we would
expect to find a different value of h if we estimated it by allowing the measure of
always takers to go to 1 rather than estimating it by allowing the measure of never
takers to go to 1.

If h is not constant, can we say anything? In fact, all we need to know is h̄ ≡
E [h(Xi) | Z = 1]. Define Y ′i ≡ Yi − h̄Zi. Then

Y ′i = g(Xi) + βiDi +
[
h(Xi)− h̄

]
Zi + εi

Because the function h is unknown, the term
[
h(Xi)− h̄

]
Zi is unobserved, and

therefore would be part of the error term if we estimated this equation. Then we can
estimate the LATE in the above equation using Z as an instrument provided that Z
is uncorrelated with h(Xi)Zi− h̄Zi + εi. Some algebra confirms that this is the case.
(See Appendix A.) Once again, since the treatment effect of D on Y ′ is the same as
the treatment effect of D on Y , we can therefore identify the LATE of interest if we
know h̄.

But if we don’t know h, why would we expect to know h̄? We might not know
exactly the true value of h̄, but a reasonable assumption might be that our obser-
vations allow us to bound h̄. For instance, in the returns to schooling example, it
might be reasonable to suppose that the invalidity for the population as a whole
lies somewhere in between the invalidity for the high-IQ, high-income always tak-
ers and the low-IQ, low-income never takers. This assumption might make sense,
for example, if we think of the invalidity among always takers as reflecting a single
wage premium for skilled workers to living in an area with a college, the invalidity
among never takers as reflecting a single wage premium for unskilled workers, and
we imagine that the population of individuals living near colleges are some mixture
of skilled and unskilled workers.11 Or it may simply be intuitive that the compliers
in this case seem to be an intermediate case between the always takers and the never
takers.

Suppose we use the techniques of the previous section to come up with an upper
and a lower bound for h̄ by estimating hJ and hK , the invalidity from subsets of
the data J and K. Assume without loss of generality that hJ > hK . Then let
Y i ≡ Yi−hJZi, and let Ȳi ≡ Yi−hKZi. Provided we observe hJ and hK , then Ȳ and
Y are observed too. So we can estimate the LATE for D on Ȳ , which we can call

10For arguments that this kind of supply and demand framework applies, see, for instance, Goldin
and Katz 2008.

11Of course, this example model is more specific than we need, and would yield a point estimate
of h̄ when all we require here is a set containing the true h̄.
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β̄, by treating Z as a valid instrument for D. We can also estimate another LATE
– call it β – by treating Z as a valid instrument for the effect of D on Y . Then the

true LATE of interest, β = E [Yi(1) = Yi(0) | i complier] lies between β̄ and β.12

The bounds obtained in this way will vary in their width. In general, we will
find narrower bounds when (i) the invalidity is similar in our bounding subsets J
and K, (ii) our covariates are powerful enough to give accurate (low standard error)
estimates of hJ and hK , and (iii) when the true reduced form effect is large, so that
the relationship between Z and Y which occurs through D is large relative to our
uncertainty about the true value of h̄.

4.1 Comparison with selection models

As mentioned before, selection models can potentially identify a causal effect of D
on Y using invalid instruments, i.e. any sources of variation in D which also have
a direct impact on Y . For example, the following model is identified under the
assumption of joint normality of the error terms u and v:

Y = Zδ + βD + u

D = 1 {Zγ + v > 0}

However, it’s important to note that the identification of β is coming from both
functional form (linearity) and distributional assumptions. In practice, we have little
way of knowing whether it is reasonable to believe that u and v are jointly normal.
Functional form assumptions are particularly problematic in the second equation,
because the underlying variable determining D is not observed. Frequently, the only
uncontroversial assumption to be made about the density of v is that it is low in the
tails.

The assumptions required for the set identification approach can be satisfied by
a similar selection model. We can extend the set identification model to include an
equation describing selection for D:

Yi = g(Xi) + βiDi + h(Xi)Zi + εi

Di = 1 [f(Xi) + Zi + ξi > 0]

Here, f can be any function. We may have little idea if ξ should be normal
or not (it would be unlikely to be standard normal, since we have normalized the
scale by setting the coefficient of Z equal to one) but perhaps we feel confident that
the distribution of ξ will have low density in the tails. This is a weakening of the
assumption of normality. Suppose in addition that f takes large values for large X
and small values for small X. This is a weakening of a linearity assumption. Finally,
assume that h is monotonic in X. This is weaker than allowing Z and an interaction
of Z with X to appear in the outcome equation. Then we can approach groups

12This statement follows from the result of Choi and Lee 2012.
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of always takers (never takers) by taking X in the direction of positive (negative)
infinity. This allows us to estimate an upper and a lower bound for h̄. Therefore
we can set identify the LATE using the approach outlined earlier, and using only
very weak assumptions on the distribution of ξ and on the functional forms of both
equations.

In this sense, the set identification approach can often be equivalent to a selection
model with very weak assumptions. Of course, the example outlined above is not
the only setup which would satisfy the assumptions required for the set identification
result; it is a sufficient but not a necessary model.13 I include it to demonstrate that,
conditional on being willing to accept the most basic functional form restrictions, like
linearity, then the set identification approach can give credible estimates of treatment
effects.

5 Application to schooling returns

Card (1995) uses proximity to college as an instrument for the effect of college at-
tendance on wages. I will first review the data and research design used by Card. I
will then test the exogeneity of college proximity using each of the three approaches
outlined before: finding a no-relevance point, parametric estimation of the g func-
tion, and nonparametric estimation. Each of these approaches rejects the validity of
the Card instrument. I then implement my set identification approach, estimating
bounds of invalidity from the populations of students least and most likely to attend
college. These bounds are wide, but they are suggestive that the true returns to
college lie somewhere in the range from zero to the estimates derived from OLS.

5.1 Data

Card uses data from the National Longitudinal Survey of Young Men (NLSYM). The
NLSYM began with a sample of 5525 American men between the ages of 14 and 24 in
1966 and periodically surveyed participants until 1981. There is some oversampling
of minorities and southerners. He collects data on wages and completed education
from the 1976 survey, at which time respondents are between the ages of 24 and
34. 29 percent of the original sample dropped out before the 1976 survey and 83
percent of the sample in 1976 reports a valid wage. For further descriptive statistics,
including those comparing the 1976 sample to the original population, see Card’s

13As an example of a model which satisfies the set identification assumptions but not the selection
model assumptions, imagine a diff-in-diffs approach in which we observe a difference between the
outcomes of treatment and control groups both before and after a period in which a policy is
implemented, assuming that the policy has no lasting effect. X would be time period and Z would
be assignment to the treatment group, and we would have two no-relevance values of X – the period
before the experiment and the period after. Then it doesn’t make sense to use a standard discrete
choice model for the determination of D, as we could write D as being strictly determined by X
and Z, with no error term.
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paper. I use data taken directly from Card’s website.14 Frequencies of each level of
education are shown in Table 1 to give the reader some sense of the typical levels
of education in the sample. Conditional on completing a year of education beyond
high school, individuals complete an average of 15.4 years of schooling. Individuals
who do not complete at least 13 years of schooling complete an average of 11.1.

Card defines the key variables as follows: The outcome, Y , is the log of wage in
1976. The treatment, D, is the number of years of education reported in 1976. Note
that this is not binary. In my own analysis, I will use some specifications where D
is allowed to be continuous, but I will primarily define D to be a binary variable
which is equal to one for individuals who report any years of education completed
beyond 12th grade.15 The instrument Z is equal to one if there is an accredited 4-
year college in the respondent’s local labor market area in 1966. Card uses additional
instruments which I drop from my analysis.16

Several variables are available for use as covariates X in my model. There are two
measures of cognitive ability: Knowledge of the World of Work (KWW) scores, which
are measured in 1966, and a measure of IQ from school records, taken in 1966 but only
available for a subset of respondents. There are also measures of parental education,
taken in 1966, some variables describing family conditions during the respondent’s
youth, and indicators for the region where the respondent lived in 1966. I select the
measure of IQ for the primary analysis because it generates significant variation in
relevance and because Griliches (1977) suggests it is more reliable than KWW.

Card estimates several models. His baseline OLS result shows a return to school-
ing of approximately 7% per year of schooling, controlling for experience and expe-
rience squared, living in the south in 1966, race, and residence in a metropolitan
statistical area (SMSA) in 1976. I replicate this specification and two others in Ta-
ble 2, as well as the same specifications with a dummy for college attendance as the
treatment variable. The estimates decline somewhat with this set of controls, but
substantial differences persist.

Card also estimates instrumental variables models using the presence of a 4-year
college and the presence of a 2-year college in the local labor market in 1966 as

14Card has generously made his cleaned data available at http://davidcard.berkeley.edu/

data_sets.html.
15I am not alone in making a binary variable out of Card’s continuous variable. Kitagawa (2008)

also constructs a binary variable for college attendance, though Kitagawa defines the variable equal
to one only for those students who complete at least four years of education beyond high school.
Kitagawa’s definition is actually problematic; imagine a student who completes high school if he
does not live near a college and who drops out of college if he does. Then this student will be a never
taker by Kitagawa’s definition, yet we would expect this student to earn higher wages if he lives
near a college even if college proximity affects wage only through years of education, as required
for Card’s instrument. I encounter a parallel problem for always takers under my definition of D,
so I resort to the continuous case as a robustness check.

16Card also uses proximity to 2-year colleges as an instrument. I do not include this instrument
in my analysis because I find it is no longer statistically significant at conventional levels in the first
stage equation once IQ and proximity to a 4-year college are included. Card also uses an interaction
term between proximity and parental education as a robustness check, which I omit for simplicity.
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Years of Education No. Cumulative %
0 3 0.1
1 2 0.1
2 2 0.2
3 4 0.3
4 6 0.5
5 13 0.8
6 22 1.4
7 40 2.5
8 90 5.0
9 91 7.6
10 146 11.6
11 193 16.9
12 1,194 50.0
13 323 58.9
14 309 67.5
15 206 73.2
16 532 87.9
17 179 92.9
18 258 100.0

Total 3,613.0

Table 1: Frequency Table: Years of Education
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instruments for schooling, finding returns to an additional year of education which
range between 12 and 14%, depending on the exact specification.

I replicate a version of Card’s results using only the presence of a 4-year college
first as an instrument for (binary) college attendance, then as an instrument for
total years of education. IQ is included as a control in the 2SLS specification since
it will be used to generate variation in relevance, which is a test of the validity of
college proximity conditional on IQ. Also shown are the results of specifications with
a number of covariates (including experience and squared experience, residence in a
metropolitan statistical area in 1976, race, and region of residence in 1966) as Card
prefers specifications with these covariates included. The results are shown in Table
3. Recall that my choice of instruments is lightly altered from Card’s.17

Because of the small sample (only 2470 individuals have an observation of IQ)
and because of the curse of dimensionality and the importance of keeping estimation
error manageable, I am not currently able to meaningfully test the validity of the
instrument using the full set of covariates to induce variation in relevance. For
now, we focus on the validity of the instrument solely conditional on IQ. While
this case does not capture Card’s preferred specification, it is nonetheless somewhat
informative about the likely size of treatment effects. Subsequent versions of this
paper will attempt to develop more efficient approaches to testing instrument validity
in order to make it possible to test instrument validity conditional on a richer set of
covariates.

5.2 Testing instrument validity

This section applies a variety of tests to determine whether the Card instrument
is plausibly valid conditioning only on IQ. I begin by producing scatterplots of the
relationship between the values of the comply and gain functions, using IQ to in-
duce variation in the instrument’s relevance. Visual inspection of the scatterplots is
enough to induce skepticism about the instrument’s validity. I then fit these points
both parametrically and nonparametrically. In addition, I test a group where the
instrument’s relevance to the treatment of attending college is plausibly zero: high
school dropouts. Because this is testing conditional on educational attainment, I
will need to argue that conditioning on dropout status would not turn a valid instru-
ment into an invalid one. The no-relevance point approach also suggests that the
instrument is invalid.

First, the comply-gain scatterplot. Figure 8 shows a scatterplot, with each point
representing a decile of IQ. The sample has been split within each decile, with half of
the points randomly selected to estimate the comply function and the other half used
to estimate the gain function. The standard errors of the estimates of the comply
component range between .049 and .098, and the standard errors of the estimates of
the gain component range between .067 and .105. Recall that we are interested in

17See previous footnote.
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Figure 8: Comply-gain diagram by IQ decile

assessing whether, if some hypothetical true (i.e. population) point lay on the gain
axis, it would in fact lie at the origin. Furthermore, if the instrument is valid, given
the 2SLS results, we would expect to find that the points in the scatterplot appear
to rise to the right, reflecting that, the more likely living near a college is to induce
individuals to attend college, the higher wages of individuals who lived near a college
in 1966 should be relative to their peers who live far from colleges. Yet in the data,
the pattern of points has a slope close to zero (in fact, negative), and the intercept
does not appear to lie at the origin.

Figure 9 shows the same diagram with a linear fit. This fit reflects the assumption
that treatment effects are not higher at higher values of compliance. In fact, this
assumption is likely to be violated, for reasons which I will discuss shortly. I assume
classical error-in-variables to compute standard errors for coefficients in the linear fit
case, using a reliability ratio of .33. The estimated intercept is .185, with a standard
error of .053. The p-value for the null hypothesis that the intercept is zero is .008,
allowing us to reject the null hypothesis at conventional significance levels.

Interestingly, the slope coefficient in this linear fit is negative, and we can even
reject that it is positive at a 90% confidence level. Remarkably, that means that, if
there is a single direct effect of proximity to college on wage, and if the treatment
effect is unrelated to comply(x), then the effect of attending college on wages is likely
to be negative. Of course, these assumptions are unlikely to hold, but they are in
some sense not so much stronger than the assumptions which led to IV estimates
larger than OLS estimates. The results are available in Table 4.

Figure 10 shows the scatterplot with a local linear fit. A nonparametric fit makes
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Figure 9: Comply-gain diagram with linear fit

little sense with this few points of support, so I omit hypothesis testing.
Of course, as discussed previously, we can only interpret these diagrams as

evidence against validity if treatment effects are not getting arbitrarily large as
comply(x) becomes small. In this case, there is a very simple reason to suspect
that treatment effects are not identical at all levels of comply(x), which is that not
all students who are induced to attend college by living near one wind up attend-
ing college for the same number of years. Figure 11 allows for intensive differences,
testing validity under the assumption that log wages are linear in years of education
by comparing the first stage (still notated as comply(x), though treatment is now
continuous) to the reduced form effect (as gain(x)) at different deciles of IQ. The
standard errors of the estimates of comply(IQ) range from .334 to .434. Using a
reliability ratio of .5, the constant is estimated to be .089, with a standard error of
.025. The p-value under the null hypothesis of a zero intercept is .007, once again
allowing us to reject the null at conventional significance levels. The slope coefficient
is still negative, but is quite close to zero. Results can be seen in Table 4.

Finally, we can assess the validity of the proximity to college instrument for the
effect of attending college on wages conditioning not on IQ, but on completing no
more than 11 years of education. This clearly represents a no-relevance point, since
no person completing fewer than 12 years of education attends college. However,
since the number of years of education completed is clearly a causal result of the
instrument, this conditioning is suspicious. But under the theory of the instrument’s
validity, proximity to college increases years of education by inducing students to
attend college, not by inducing them to complete high school. This assumes that the

29



Figure 10: Comply-gain diagram with local linear fit

option value of completing high school in order to be able to attend a 4-year college
is unlikely to convince students to complete high school; this is believable if students
at the margin of dropping out of high school are unlikely to be at the margin of
attending a 4-year college.

This comparison can be made with a simple comparison of means. Students
completing 11 or fewer years of education who live near a 4-year college earn an
average log wage of 6.076 in 1976 (standard error=.026). Their peers who do not
live near a 4-year college earn an average log wage of 5.89 (standard error=.027).
The t-statistic for the equality of these means is 5.05, and we reject that college
proximity is a valid instrument for college attendance conditional on dropout status.
Our point estimate of the difference is .189, with a standard error of .038. Intuition
and further tests suggest that this discrepancy is unlikely to occur because of option
value.18

The balance of this evidence is enough to suggest that, conditioning on IQ, prox-
imity to a four year college is unlikely to be a valid instrument for attending college

18If option value induces students to complete more years of high school in areas near 4-year
colleges, then the remaining students who drop out despite living near a college are likely to fall
lower in the distribution of ability than students who drop out and do not live near a college. This
would produce a negative, not the observed positive, wage premium for dropouts who lived near
colleges in 1966 relative to their peers who did not live near a college.

As an additional robustness check to consider the possibility of contamination through option
value, I performed the same test, conditioning on completing 10 or fewer and 9 or fewer years of
education, and obtained even larger discrepancies.
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(1) (2)
Variables gain gain

comply -1.744* -0.0154
(0.917) (0.120)

Constant 0.185*** 0.0889***
(0.0531) (0.0248)

D binary or cont.? Binary Cont.
Observations 10 10
R-squared 0.578 0.004

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Error-in-variables estimates of parametric case

or for years of education. Additionally, conditioning on dropout status rather than
IQ, proximity to a 4-year college is unlikely to be a valid instrument for attending
college.

5.3 Set identification

The previous section offered evidence that the Card instrument is invalid. This
section attempts to place bounds on the direct effect of attending college on log
wages.

Because of general equilibrium effects, there are theoretical reasons to believe that
the direct effect of proximity to a 4-year college on log wages will be the highest for
unskilled workers and lowest for skilled workers. If this is the case, we can bound the
invalidity by measuring direct effects for individuals with low and with high academic
achievement, on the premise that individuals with low academic achievement are
likely to become unskilled workers, and visa versa for high-achieving students.

To estimate a bound for unskilled workers, we can use the simple no-relevance
point of high school dropouts. This yields an estimated direct impact of .189. To
estimate the bound for skilled workers, I perform parametric estimation of invalidity
with linear fit on the top half of the IQ distribution, obtaining an estimated intercept
of .069.19

Applying these two numbers as bounds produces an estimate of the effects of
attending college on log wages. Table 5 shows the IV estimates at the lower and
upper bounds. These bounds include a wide range of values, including the possibility
that the wage returns to college are zero. The bound estimated from Ȳ still shows

19I broke observations in the top half of the IQ distribution into deciles by IQ within the top half
of the distribution, and I used a reliability ratio of .25, following the same approach as before.
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Figure 11: Comply-gain diagram with continuous treatment

a positive effect, but it falls below the effect estimated treating proximity to college
as a valid instrument. An important caveat is that different results may arise if
additional covariates are added. Because of the curse of dimensionality, I am unable
to produce results with further controls at this time. These results will be updated
once Monte Carlo simulations are completed to determine finite sample properties
of potential approaches to including additional covariates. In the meantime, these
empirical results should be taken to be suggestive rather than definitive.

6 Conclusion

This paper introduces a framework for testing the validity assumption used in in-
strumental variables estimation, treating a placebo test as the limit of not-quite
placebo tests. Tests in this framework have power to detect invalid instruments
when there are covariates which can induce variation in the instrument’s relevance
without causing the invalidity to go to zero as the instrument’s relevance goes to
zero. The requirement of variation in relevance is satisfied in many applications – for
example, when treatment is binary and we observe covariates which are good predic-
tors of treatment status. Both parametric and nonparametric approaches to testing
are possible. Furthermore, when instruments are found to be invalid, point and set
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(1) (2)
Variables Y Ȳ

college -0.274* 0.716***
(0.155) (0.162)

Constant 6.271*** 5.853***
(0.0791) (0.0824)

Observations 3,010 3,010
Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Set identification bounds

identification of causal effects are possible under some additional assumptions.
The application to the Card instrument highlights both the value of the approach

and some of its current shortcomings. On the positive side, it is possible to construct
arguments suggesting that the instrument is invalid, including arguments which do
not require a pure placebo test. On the negative side, though it turns out that
the test is powerful enough in this case to reject the null with a single covariate,
the limited size of the sample can be an obstacle to testing with a large number of
covariates. A point of emphasis for future work will be to develop techniques based
on this framework which make more efficient use of the available data to test the
hypothesis of instrument validity.
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Appendix

A Proof: Z uncorrelated with error term

Claim: Z and the error term are uncorrelated once we have adjusted for h̄.
The covariance of Z and

[
h(X)− h̄

]
Z + ε is equal to

E
[
Z
([
h(X)− h̄

]
Z + ε

)]
− E(Z)E

([
h(X)− h̄

]
Z + ε

)
Factoring, this gives

E
(
Z2
[
h(X)− h̄

])
+ E(Zε)− E(Z)E

(
Z
[
h(X)− h̄

])
− E(Z)E(ε)
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Because ε is defined as an error term with mean zero and orthogonal to Z, the second
and fourth terms are equal to zero. Applying the law of iterated expectations to the
two remaining terms gives

E
[
E
(
Z2
[
h(X)− h̄

]
| Z
)]
− E(Z)E

[
E
(
Z
[
h(X)− h̄

]
| Z
)]

Z takes only two values, 1 and 0, and each of the terms which is now conditioned on
Z takes the value 0 when Z = 0. Then we can write this expression as

E(Z)E
[
h(X)− h̄ | Z = 1

]
− E(Z)2E

[
h(X)− h̄ | Z = 1

]
This equals zero when E

[
h(X)− h̄ | Z = 1

]
= 0. But h̄ is a constant, so E

[
h(X)− h̄ | Z = 1

]
=

E [h(X) | Z = 1]− h̄ = h̄− h̄ = 0.
Therefore, the covariance of Z and the error term is zero, so they are uncorrelated.
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